Course Code	22MEMD2T6A	Year	Ι	Semester	II
Course	Programme	Branch	ME	Course Type	Theory
Category	Elective	Dranch	IVIL	Course Type	Theory
Credits	4	L-T-P	4-0-0	Prerequisites	Nil
Continuous		Semester			
Internal	40	End	60	Total Marks:	100
Evaluation:		Evaluation:			

NON-DESTRUCTIVE TESTING

Course outcomes: At the end of the course, the student will be able to:

СО	Statement	BTL	Units
CO1	Explain the fundamentals of non-destructive testing and Liquid Penetration testing	L2	1
CO2	Demonstrate Magnetic Particle Testing and Ultrasonic testing methods	L2	2
CO3	Describe Acoustic Emission Testing, Thermography, and Codes, Standards, Specification and Procedures used for NDT	L2	3
CO4	Enumerate the procedures to detect different flaws in composite materials	L2	4

Contribution of Course outcomes towards achievement of programme outcomes & Strength of correlations (High:3, Medium: 2, Low:1)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO 1	3	2		1	2	1			2			1	3	1
CO 2	3	2		1	2	1			2			1	3	1
CO 3	3	2		1	1	1			2			1	3	1
CO 4	3	2		1	2	1			2			1	3	1

	Syllabus					
Unit	Contents					
1	INTRODUCTION: Various methods, advantages, disadvantages and applications. Visual Examination: Basic principle, the eye- defects which can be detected by unaided, visual inspection, optical aids used for visual inspection- microscope, bore scope, endoscope, telescope, holography; applications. LIQUID PENETRANT TESTING: Physical principles, Procedure for Penetrant testingcleaning, penetrant application, removal of excess penetrant, application of developer, inspection and evaluation; Penetrant testing materials: penetrants, cleaners and emulsifiers, developers,					

		ī			
	special requirements, test blocks; penetrant testing methods: water washable				
	method, post-emulsifiable method, solvent removal method; sensitivity,				
	applications & limitations				
	MAGNETIC PARTICLE TESTING: Principle of MPT, Magnetizing	CO2			
	techniques- magnetization using a magnet, magnetization using an electro				
	magnet, constant current flow method. Procedure used for testing a				
	component: Equipment used for MPT-simple equipment, large portable				
	equipment, stationary magnetizing equipment; sensitivity, limitations.				
2	ULTRASONIC TESTING: Basic properties of sound beam- sound waves,				
	velocity of ultrasonic waves, acoustic impedance, behaviour of ultrasonic				
	waves. Inspection methods: Normal incident pulse-echo inspection, normal				
	incident through-transmission testing, angle beam pulse-echo testing, criteria				
	for probe selection, flaw sensitivity, beam divergence, penetration and				
	resolution.				
	ACOUSTIC EMISSION TESTING: Principle of AET, technique,	CO3			
	instrumentation, sensitivity, applications. THERMOGRAPHY: Basic				
	principles, detectors and equipment, techniques, applications. CODES,				
	STANDARDS, SPECIFICATION AND PROCEDURES: Code, standards-				
3	international and national standards, industry standards, government and				
	military standards, industry practices, standards; specification, procedures,				
	Indian National standards for NDT, International standards for NDT- ISO				
	standards for quality systems.				
	LIQUID CRYSTALS FOR FLAW DETECTION IN COMPOSITES:	CO4			
	Equipment, specimen preparation procedure, results, passive tests, discussion	`			
	and conclusions. DETECTION OF DAMAGE IN COMPOSITE				
4	MATERIALS BY VIBROTHERMOGRAPHY: Experimental technique,				
	results and discussion. APPLICATION OF X-RAY TOMOGRAPHY TO				
	THE NON-DESTRUCTIVE TESTING OF HIGH PERFORMANCE				
	POLYMER COMPOSITES: Introduction, presentation of basic method on the				
	medical scanner, absorption of x-rays, x-ray tomography, terminology, results				
	achieved with the CGR – ND 8000 Scanner, conclusions.				
		I			

Learning Resources

Text Book(s):

1. Practical Non-Destructive Testing, (2nd Edition) by Baldev Raj, T. Jayakumar, M. Thavasimuthu, Wood head Publishing Limited.

2. Non-Destructive Testing of Fibre-Reinforced Plastics Composites by J. Summerscales, Springer.

3. Damage Detection in Composite Materials by Masters JE, ASTM STP 1128.

4. Non-destructive evaluation and flaw criticality for composite materials by R. Byron Pipes, ASTM International, 197